The search functionality is under construction.

Author Search Result

[Author] Yoji KAJITANI(24hit)

21-24hit(24hit)

  • Universal Graphs for Graphs with Bounded Path-Width

    Atsushi TAKAHASHI  Shuichi UENO  Yoji KAJITANI  

     
    PAPER

      Vol:
    E78-A No:4
      Page(s):
    458-462

    A graph G is said to be universal for a family F of graphs if G contains every graph in F as a subgraph. A minimum universal graph for F is a universal graph for F with the minimum number of edges. This paper considers a minimum universal graph for the family Fkn of graphs on n vertices with path-width at most k. We first show that the number of edges in a universal graph Fkn is at least Ω(kn log(n/k)). Next, we construct a universal graph for Fkn with O(kn log(n/k)) edges, and show that the number of edges in a minimum universal graph for Fkn is Θ(kn log(n/k)) .

  • Schedule-Clock-Tree Routing for Semi-Synchronous Circuits

    Kazunori INOUE  Wataru TAKAHASHI  Atsushi TAKAHASHI  Yoji KAJITANI  

     
    PAPER

      Vol:
    E82-A No:11
      Page(s):
    2431-2439

    It is known that the clock-period can be shorter than the maximum of signal-delays between registers if the clock arrival time to each register is properly scheduled. The algorithm to design an optimal clock-schedule was given. In this paper, we propose a clock-tree routing algorithm that realizes a given clock-schedule using the Elmore-delay model. Following the deferred-merge-embedding (DME) framework, the algorithm generates a topology of the clock-tree and simultaneously determines the locations and sizes of intermediate buffers. The experimental results showed that this method constructs a clock-tree with moderate wire length for a random layout of scheduled registers. Notably, the required wire length for a gentle layout of scheduled registers was shown to be almost equal to that of zero-skew clock-trees.

  • The 3D-Packing by Meta Data Structure and Packing Heuristics

    Hiroyuki YAMAZAKI  Keishi SAKANUSHI  Shigetoshi NAKATAKE  Yoji KAJITANI  

     
    PAPER

      Vol:
    E83-A No:4
      Page(s):
    639-645

    The three dimensional (3D) packing problem is to arrange given rectangular boxes in a rectangular box of the minimum volume without overlapping each other. As an approach, this paper introduces the system of three sequences of the box labels, the sequence-triple, to encode the topology of the 3D-packing. The topology is the system of relative relations in pairs of boxes such as right-of, above, front-of, etc. It will be proved that the sequence-triple represents the topology of the tractable 3D-packings which is a 3D-packing such that there is an order of the boxes along which all the boxes are extracted one by one in a certain fixed direction without disturbing other remaining boxes. The idea is extended to the system of five ordered sequences, the sequence-quintuple. A decoding rule is given by which any 3D-packing is represented. These coding systems are applied to design heuristic algorithms by simulated annealing which search the codes for better 3D-packings. Experimental results were very convincing its usefulness as automated packing algorithms.

  • Routability of FPGAs with Extremal Switch-Block Structures

    Yasuhiro TAKASHIMA  Atsushi TAKAHASHI  Yoji KAJITANI  

     
    PAPER

      Vol:
    E81-A No:5
      Page(s):
    850-856

    The switch-block architecture of FPGAs is discussed to see a good balance between programmable-switch resources and routability. For the purpose, FPGAs are assumed to have certain extremal structures, whose switch-blocks consist of parallel or complete switch-sets where a switch-set is a set of switches between two sides of the switch-block. A polynomial time detailed-routing algorithm for a given global-routing is presented if the switch-block consists of two or less parallel switch-sets or three that form a cycle. For other FPGAs, the corresponding decision problem is proved to be -complete. A best compromise between switch resources and routability is offered.

21-24hit(24hit)